skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pullen, Alex"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. Large fan-shaped sediment distributary systems (103 – 105 km2), typically referred to as fluvial megafans, are found proximal to topographic barriers within terrestrial basins. Concepts regarding their formation have been focused on water-dominated processes associated with monsoonal climates, high sediment bedload, and flow rate. But are there other processes behind the erratic avulsive channel behavior of some of the largest fans on the planet? This study presents remotely mapped geomorphic observations from megafans including playa lakes, dunes, vegetation patterns, and basin elevation profiles of fans. Corroborating these concepts are field observations drawn from the Chaco Plain of Argentina. Active tectonics set the stage for multiple monsoon-affected eastward-flowing fluvial systems to interact with the northerly prevailing winds from the South American lower-level jet. The Chaco megafans exhibit low overall slope and limited drainage integration creating playas in both abandoned channels within the active fluvial belt and small depressions on the loess-covered floodplains. Chaco forebulge stratigraphy shows that distal from the main fluvial belt multiple loess-paleosol sequences are present up to four meters below the surface. This suggests that where subsidence outpaces fluvial avulsion rates, fine-grain wind-blown detritus aggrades in packages defined by soil profiles. Loessic paleosols are also located proximal to the orographic front, where the development of uplands relative to modern/recent fluvial incision protects the eolian sediments from erosion. Varying temporal cyclicity in aridity and seasonality of precipitation determines the climatic regime that the megafan sediments experience, resulting in megafans covered in complex fabrics of slope-oriented fluvial/pluvial features superimposed on wind-oriented eolian features and vice versa. The interaction of these depositional environments in the Chaco foreland basin highlights the smoothing effect of eolian transport and deposition, which may allow for high-avulsion rates that enhance megafan development. These geomorphic features can be observed on other globally notable megafan basin systems, highlighting the complexity of sediment transport pathways within a terrestrial realm. 
    more » « less
  3. Cretaceous eolian deposits provide evidence of variations in the tropical-subtropical atmospheric circulation under greenhouse conditions. However, the misinterpretation of many such deposits as fluvial or deltaic originally hindered precise paleoclimatic reconstructions. Here we report a newly identified Early Cretaceous desert in the Hami Basin, China, which helps understand spatial-temporal variations in aridity and atmospheric circulations within central East Asia during the Early Cretaceous. The Liushuquan Formation is composed of >300-m-thick eolian deposits interpreted as an intermontane erg environment. Paleocurrent indicators within the straight-crested dunes of the Liushuquan Formation yield a mean trend of 101.3° (± 10.1°, 1 standard deviation) throughout the formation, consistent with near-surface westerly winds. Paleo-atmospheric circulation superimposed on topographic effects led to widespread eolianite accumulation during the Early Cretaceous. Combined with the spatiotemporal changes in desert distributions and prevailing surface wind patterns in East Asia, these observations are consistent with the migration of the subtropical high-pressure belt during the Early Cretaceous. We propose the following paleo-atmospheric model: (1) During the late Berriasian−Valanginian, the subtropical high belt drifted southward and northward over shorter time scales within the spatial domain of the paleo-Ordos Basin, then shifted southward at least past the Ordos Basin; (2) until the late Hauterivian−Barremian, the subtropical high-pressure zone was primarily located between the northwestern Tarim Basin and the Ordos Basin; and (3) a significant southward shift of the subtropical high-pressure zone occurred during the Aptian−Albian. 
    more » « less
  4. Free, publicly-accessible full text available December 1, 2025
  5. Abstract Wind-blown dust from southern South America links the terrestrial, marine, atmospheric, and biological components of Earth’s climate system. The Pampas of central Argentina (~33°–39° S) contain a Miocene to Holocene aeolian record that spans an important interval of global cooling. Upper Miocene sediment provenance based onn = 3299 detrital-zircon U-Pb ages is consistent with the provenance of Pleistocene–Holocene deposits, indicating the Pampas are the site of a long-lived fluvial-aeolian system that has been operating since the late Miocene. Here, we show the establishment of aeolian sedimentation in the Pampas coincided with late Miocene cooling. These findings, combined with those from the Chinese Loess Plateau (~33°–39° N) underscore: (1) the role of fluvial transport in the development and maintenance of temporally persistent mid-latitude loess provinces; and (2) a global-climate forcing mechanism behind the establishment of large mid-latitude loess provinces during the late Miocene. 
    more » « less
  6. The Pampas of Argentina contain a broad distribution of Pleistocene to Holocene loessic sediments and eolian dune deposits. Models describing the sediment provenance of this eolian system have, at times, conflicted. We address the provenance of these deposits through U-Pb detrital-zircon geochronology. Our results indicate broad similarity in age distributions between samples, with a dominant Permian-Triassic mode, and widespread but lesser Cenozoic, Devonian-Mississippian, Ediacaran-Cambrian, and Mesoproterozoic modes. These data are inconsistent with a large contribution of detritus from Patagonia as previously suggested. These data are consistent with very limited contribution of first cycle volcanogenic zircon to the Pampean eolian system, but abundances of older Neogene zircon indicate proto-sources in the Andes. The ríos Desaguadero, Colorado, and Negro contain populations that were likely within the dust production pathways of most of the loess, paleosol, and eolian dune deposits, but the derivation of the zircon ages in these sediments cannot be explained solely by these river systems. One statistical outlier, a loess sample from the Atlantic coast of the Pampa region, indicates quantitative similarity to the age spectra from the ríos Colorado and Negro, consistent with derivation from these subparallel rivers systems during subaerial exposure of the continental shelf under high global ice-volume. Another statistical outlier, a paleosol sample from the Río Paraná delta region, has zircon ages more closely associated with sediments in the Paraná region than in rivers south of the Pampa region. Collectively, these data point to the complexity of the Pampean eolian system and substantial spatial-temporal variation in this Pleistocene−Holocene eolian system. 
    more » « less
  7. Abstract The Tafí del Valle depression (~27° S) in the eastern Andes of Argentina provides a record of late Pleistocene dust deposition in the subtropics of South America. We present large-nU-Pb geochronology data for detrital zircons from upper Pleistocene loess-paleosol deposits. When compared to regional data, the age spectra from the Tafí del Valle samples are most like the southern Puna Plateau, supporting derivation largely from the west and northwest. This runs counter to hypotheses suggesting these loessic sediments were derived from the low elevation plains to the east or extra-Andean Patagonia. Mapping of linear wind erosion features on the Puna Plateau yield a mean orientation of 125.7° (1 s.d. = 12.4°). These new data and existing records are consistent with a westerly-northwesterly dominated (upper- and lower-level) wind system over the southern Puna Plateau (to at least ~27° S) during periods of high dust accumulation in Tafí del Valle. 
    more » « less
  8. Abstract Quantifying variability in, and identifying the mechanisms behind, East Asian dust production and transport across the last several million years is essential for constraining future dust emissions and deposition. Our current understanding of East Asian dust dynamics through the Quaternary is primarily limited to low‐resolution records from the North Pacific Ocean, those from the Chinese Loess Plateau (CLP), and paleoenvironmental reconstructions from arid basins. All are susceptible to sediment winnowing and focusing as well as input of poorly constrained or unidentified non‐dust detrital material. To avoid these limitations, we examine high‐resolution, constant flux proxy‐derived dust fluxes from the North Pacific and find evidence for higher glacial dust fluxes in the late Pliocene‐early Pleistocene compared to the late Pleistocene‐Holocene. Our results suggest decreasing dust transported to the mid‐latitude North Pacific Ocean from eastern Asia across the Quaternary. This observation is ostensibly at odds with previous dust records from marine sediments and the CLP, and with the perception of higher East Asian dust production and transport during the late Pleistocene associated with the amplification of glaciations. We provide three possible scenarios to describe the ∼2,700‐ky evolution of eastern Asia glacial dust dynamics, and discuss them in the context of sediment production, availability, and atmospheric circulation. Our data and proposed driving mechanisms not only raise questions about the framework typically used to interpret dust archives from East Asia and the North Pacific Ocean, but also provide a roadmap for hypothesis testing and future work necessary to produce better‐constrained records of paleo‐dust fluxes. 
    more » « less